
PVFS BOF Session
Details of PVFS2

PVFS2 Development Team

PVFS2 Details – p. 1



The PVFS Project

PVFS project started in mid-1990s at
Clemson

Code in use today still has pieces from
1995
We’ve been pushing that code well beyond
its original design constraints

Meanwhile we’ve been working with
application groups, other researchers, other
file systems, high-level I/O libraries

Better perspective on the field as a whole
More insight into capabilities of systems,
potential pitfalls

PVFS2 Details – p. 2



A New PFS: PVFS2

Obviously a new design was in order

Embodying the principles we feel are key for
performance and usability

Supporting the hardware available today

Scaling to expected system sizes

PVFS2 is this new design

Intended to quickly mature into a production-quality
PFS

Also a basis for research into next-generation
systems (autonomous storage, etc.)

Collaboration between ANL and Clemson, plus others
PVFS2 Details – p. 3



Collaborators

Northwestern I/O group
A. Choudhary, W. Liao, A. Ching, J. Li, K.
Coloma

Ohio State Supercomputer Center
P. Wyckoff, T. Baer

Ohio State University
D.K. Panda, J. Wu

PVFS2 Details – p. 4



PVFS2 Status

First public release was made available
earlier in the week

Web site, mailing lists, documentation, CVS
access all in place

Everything can be found off
http://www.pvfs.org/pvfs2

PVFS2 Details – p. 5



System Requirements

Servers
Linux (2.4 or 2.6) IA32, IA64, Alpha, PPC

Local disk (ext2, ext3, xfs, reiserfs, etc.)

TCP, Myrinet, or InfiniBand network

Clients
VFS for Linux (2.6 only right now), IA32 tested (others in

theory)

MPI-IO on Linux (2.4 or 2.6) IA32, IA64, Alpha

Ready for beta testing, not for production use

PVFS2 Details – p. 6



PVFS2 at a Glance

Clients running
applications

(100s−1000s)

I/O servers
(10s−100s)

...

...PVFS2 Server

Application

MPI−IO or Linux VFS

or Infiniband Network
TCP/IP, Myrinet,

“Intelligent” servers with PFS-oriented protocol
Messaging over existing communication network
Storage on locally attached disks (possibly shared for
failover purposes)

PVFS2 Details – p. 7



Design Goals

Careful to limit the scope of the effort

Effective solution for parallel applications

Must concentrate on
Performance
Reliability
Maintainability
Ease of Administration

Other applications are fair game
No design changes that compromise
parallel, scientific I/O usability

PVFS2 Details – p. 8



Performance

Extracting performance from underlying
hardware through appropriate abstractions

Key workloads/access patterns
File manipulation (e.g. ls, cp)
Application parallel I/O (e.g. MPI-IO,
HDF5, PnetCDF)
IOzone and Bonnie++ are not useful
parallel I/O benchmarks

Optimizations focus on these two types of
access

Consistency semantics tuned to match
PVFS2 Details – p. 9



Reliability

HW components are fault prone

To address this

Minimize impact of faults on system as a whole

Leverage existing (proven) failover solutions

Keep the approach simple

A stateless system made up of independent entities
seems best if it will meet the other needs

Fewer cascading failures

Simplifies fault handling

Standard HA approaches are applicable

PVFS2 Details – p. 10



Maintainability

Keeping components in user space when
possible facilitates debugging, portability

Intermediate languages to manage
complexity (e.g. state machines)

Concurrent access test suite being built
alongside system

Automate testing for correctness and
performance
Eliminate re-introduction of bugs

PVFS2 Details – p. 11



Ease of Administration

Protocol support for maintenance and
monitoring operations

Iterating through objects
Event logging
Performance logging

Tools for examining the system
Visualizing file system layout, run-time
performance

PVFS2 Details – p. 12



PVFS2 Servers

Single server type handles both metadata
and I/O operations

Servers are independent, only communicate
with clients

Distributed metadata fully supported, no
restrictions

Some optimizations not possible with multiple
metadata servers

But load is spread across multiple servers

Servers store data on locally accessible
storage

PVFS2 Details – p. 13



Networks

PVFS2 is designed to support multiple
networks

Message-oriented, reliable, ordered
network abstraction (BMI)
Implementations for TCP, InfiniBand, and
Myrinet GM

Thank Pete Wyckoff for IB

Multiple network types may be in use for a
single FS

Multi-homing of servers not yet in place, but
planned

PVFS2 Details – p. 14



Application Interfaces

Two methods of interface are supported:
MPI-IO – parallel applications
Mountable file system – utilities and
administration

Client libraries are provided for research
purposes and for building administration tools

Tailored for supporting MPI-IO and VFS
operations
Not for casual users (doesn’t look like
POSIX)

PVFS2 Details – p. 15



Storage

Multiple storage targets are possible

Single implementation at this time
Berkeley DB used for metadata and
directory storage

Convenient iterators, key searches
UNIX files used for data storage

Obvious choice for streams of bytes

Leverages AIO calls as appropriate

Explicit caching and O_DIRECT use in
progress

PVFS2 Details – p. 16



Summary

PVFS2 is now available for people to try

We’re focusing our efforts
Parallel, scientific application performance
Statelessness for superior fault handling
Management tools
Testing to guarantee reliability of
implementation

Everything is available at http://www.pvfs.org

We’d like to stop here and answer your
questions

PVFS2 Details – p. 17


	The PVFS Project
	A New PFS: PVFS2
	Collaborators
	PVFS2 Status
	System Requirements
	PVFS2 at a Glance
	Design Goals
	Performance
	Reliability
	Maintainability
	Ease of Administration
	PVFS2 Servers
	Networks
	Application Interfaces
	Storage
	Summary

